
Suggested solution of HW4

Chapter 6 Q1: By the product formula of Γ, we have for all z,

1

Γ(z)
= Γ(1− z) sinπz

π
= eγzz

∞∏
n=1

(1 +
z

n
)e−z/n

where γ is the Euler’s constant.

N∏
n=1

eγzz(1 +
z

n
)e−z/n = eγzz

(z + 1)(z + 2) · ·(z +N)

N !
e−z(

∑N
n=1

1
n−logN) · e−z logN

→ lim
n→∞

z(z + 1) · ·(z + n)

nzn!
,

whenever z 6= 0,−1,−2, ....

Chapter 6 Q3: Recall Walliss product formula stating that

π

2
=

∞∏
n=1

(
2n

2n− 1
· 2n

2n+ 1

)

= lim
m→∞

2 · 2
1 · 3

· 4 · 4
3 · 5

...
2m · 2m

(2m− 1)(2m+ 1)

= lim
m→∞

24 · 44...(2m)4

12 · 22 · 32 · ...(2m+ 1)2
· (2m+ 1)

= lim
m→∞

(m!)424m

[(2m+ 1)!]2
(2m+ 1).

Recall the Gauss formula,

Γ(s) = lim
n→∞

nsn!

s(s+ 1)...(s+ n)
.

Direct substitution yields the following

n2s+1/2(n!)2

s(s+ 1/2)(s+ 1)...(s+ n)(s+ 1/2 + n)
=

4n+1(n!)2n2s
√
n

(2s)(2s+ 1)...(2s+ 2n+ 1)

=

[
(2n+ 1)2s(2n+ 1)!

(2s)...(2s+ 2n+ 1)

]
· 4n
√

2n+ 1(n!)2

(2n+ 1)!
· 4n2s+1/2

(2n+ 1)2s+1/2

→ Γ(2s) ·
√
π

2
· 23/2−2s =

√
π21−2sΓ(2s).

Chapter 6 Q4: For f(z) = 1/(1− z)α = exp [−α log(1− z)], we have

(1− z)f ′(z) = exp [−α log(1− z)] = αf(z)

(1− z)f ′′(z) = (α+ 1)f ′(z)

Inductively, we have

(1− z)f (n)(z) = (α+ n− 1)f (n−1)(z) = (α+ n− 1) · (α+ n− 2) · ·(α+ 1)f(z).
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Put z = 0, we have

f (n)(0) = (α+ n− 1)f (n−1)(z) = (α+ n− 1) · (α+ n− 2) · ·(α+ 1).

Since an(α) = f (n)(0)/n! , we have

an(α)

nα−1
=

(α+ n− 1) · (α+ n− 2) · ·(α+ 1)

nα−1
→ Γ(α).

Chapter 6 Q10: (a) Our goal is to comparer the integral
∫∞
0
e−tts−1 dt with

∫∞
0
e−itts−1 dt. So

we consider the meromorphic function f(w) = e−wwz−1 for a fixed z ∈ C on

{z : Re(z) ≥ 0}.
Consider the contour suggested in textbook and denote it by γ = γ1∪γ2∪γ3∪γ4
where γ1 is on the real axis, γ2 is the large circular arc, γ3 is on the imaginary

axis and γ4 is the smaller γ4. As it is holomorphic, by cauchy theorem,

0 =

∮
γ

f(w) dw =

∮
γ1

+

∮
γ2

+

∮
γ3

+

∮
γ4

f(w) dw.

We compute them separately.∮
γ1

f(w) dw =

∫ R

ε

e−ttz−1 dt,

∮
γ2

f(w) dw =

∫ π/2

0

e−Re
iθ

(eiθ)z−1Rz dθ.

∮
γ3

f(w) dw = −
∫ R

ε

e−it(it)z−1i dt = −iz
∫ R

ε

e−ittz−1 dt,

∮
γ4

f(w) dw = −
∫ π/2

0

e−εe
iθ

(eiθ)z−1εz dθ.

Letting ε → 0, we see that the fourth term goes to 0 if Re(z) > 0. Let R → ∞,

we see that the second term goes to 0 as illustrated below.∣∣∣∣∣
∫ π/2

0

e−Re
iθ

(eiθ)z−1Rz dθ

∣∣∣∣∣ ≤ RRe(z) ·
∫ π/2

0

e−R cos θ dθ.

Let t = cos θ, we have∫ π/2

0

e−R cos θ dθ =

∫ 1

0

e−Rt√
1− t2

dt→ 0.

The convergence can be seen by splitting it into two parts,
∫ 1

1/2
,
∫ 1/2

0
, or simply

using Lebesgue’s monotone convergence theorem. Thus, if Re(z) ∈ (0, 1), we

have ∣∣∣∣∣
∫ π/2

0

e−Re
iθ

(eiθ)z−1Rz dθ

∣∣∣∣∣→ 0

as R→∞. So we yield the following result.∫ ∞
0

e−ittz−1 dt = i−z
∫ ∞
0

e−ttz−1 dt = e−iπz/2Γ(z).

Part (a) follows from taking real part and imaginary part of this expression.
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(b) For t ∈ (0, 1), we have sin t ≤ t. So, whenever Re(z) ∈ (−1, 1),

∫ 1

0

∣∣∣∣ sin tt1−z

∣∣∣∣ dt ≤ ∫ 1

0

1

t−Re(z)
dt <∞.

On the other hand,∫ ∞
1

sin t

t1−z
dt = − cos 1 + (z − 1)

∫ ∞
1

cos (t)tz−2 dt.

Thus, M(sin)(z) define a analytic function on −1 < Re(z) < 1 . By analytic

continuation, the second equality holds on the large strip. Put z = 0 and z =

−1/2 to obtain the conclusion.

Chapter 6,Q14: (a) First part follows from the Fundamental theorem of calculus. And the second

part follows from integrating log x.

(b) By (a), and monotonicity of Γ(x), for large n, we have

log n+ log Γ(n) = log Γ(n+ 1) ≥
∫ n+1

n

log Γ(t) dt = n log n− n+ c ≥ log Γ(n).

So, we have the following inequality,

n log n− n+ c ≥ log Γ(n) ≥ (n− 1) log n− n+ c

1− 1

log n
+

c

n log n
≥ log Γ(n)

n log n
≥ n− 1

n
− 1

log n
+

c

n log n
.

Take n → ∞ to obtain the asymptotic behaviour. Indeed, one can observe

log Γ(n) ∼ n log n+O(n) from the first inequality.

chapter 6, Q15:

Γ(s) =

∫ ∞
0

e−tts−1 dt = ns
∫ ∞
0

e−ntts−1 dt;

That is

n−sΓ(s) =

∫ ∞
0

e−ntts−1 dt.

Summing over all n yield

ζ(s)Γ(s) =

∞∑
n=1

∫ ∞
0

e−ntts−1 dt

=

∫ ∞
0

ts−1
∞∑
n=1

e−nt dt

=

∫ ∞
0

ts−1

et − 1
dt.

Chapter 6,Q16: You may follow the step suggested in the tutorial class on 3/11 by proving the Rie-

mann’s Functional Equation. Or use the hints suggested in the textbook as stated in
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the following.

By Q15, we can write

Γ(s)ζ(s) =

∫ ∞
0

ts−1

et − 1
dt =

∫ 1

0

ts−1

et − 1
dt+

∫ ∞
1

ts−1

et − 1
dt

As the function in the second integral is of exponential decay, it defines a entire

function. Now we take a look on the first integral. By expanding the power series of

z/(ez − 1) at z = 0, we have

1

ez − 1
=

∞∑
m=0

Bm
m!

zm−1

where

lim sup
m→∞

∣∣∣∣Bmm!

∣∣∣∣1/m =
1

2π
. (1)

by Cauchy Hadamard theorem and the fact that radius of convergence of z/(ez − 1)

is 2π. Using this, we are able to represent the first integral in the following form.∫ 1

0

ts−1

et − 1
dt =

∞∑
m=0

Bm
m!(s+m− 1)

.

By the control of (1), the series converges uniformly on any compact set away from

{1, 0,−1, ...}. It gives a meromorphic function on C with simple pole at {1, 0,−1, ...}.
But since 1/Γ(s) is a entire funtion with simple zero at {0,−1,−2, ...}. So

1

Γ(s)

∫ 1

0

ts−1

et − 1
dt

define a meromorphic function with a simple pole at s = 1.

Chapter 7,Q1: By summation by part formula, we can reformulate the Dirichlet series in the following

way,

N∑
n=1

an
ns

=
AN
Ns
−
N−1∑
n=1

An

[
1

(n+ 1)s
− 1

ns

]
.

Noted that in general, the mean value theorem does not hold for holomorphic function.

So we argue in the following way.

For a fixed s ∈ C, define a holomorphic function f(z) = z−s on the right half plane.

Consider the straight line γ from n+ 1 to n.∣∣∣∣ 1

(n+ 1)s
− 1

ns

∣∣∣∣ = |f(n+ 1)− f(n)|

=

∣∣∣∣∫ n+1

n

f ′(t) dt

∣∣∣∣
≤
∫ n+1

n

|f ′(t)| dt ≤ sup{|f ′(t)| : t ∈ [n, n+ 1]}.
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Within [n, n+ 1], for Re(s) > 0,

|f ′(x)| = |s|
|xs+1|

≤ |s|
xRe(s)+1

≤ |s|
nRe(s)+1

Combine this to the series, we obtain

N−1∑
n=1

|An|
∣∣∣∣ 1

(n+ 1)s
− 1

ns

∣∣∣∣ ≤ N−1∑
n=1

M |s|
nRe(s)+1

.

The series is absolutely convergent. So

∞∑
n=1

an
ns

converge. And the convergence is

uniform on any compact set due to the above estimate.

Chapter 7,Q2: (a) We claim that for two absolutely convergent series
∑
an,

∑
bn,

∞∑
k=1

ak ·
∞∑
m=1

bm =

∞∑
n=1

∑
mk=n

akbm.

Let ε > 0, there exists N such that,

∞∑
k=N

|ak|+
∞∑

m=N

|bm| < ε.

On the other hand,∣∣∣∣∣∣
N∑
k=1

ak ·
N∑
m=1

bm −
N2∑
n=1

∑
mk=n

akbm

∣∣∣∣∣∣ ≤
N2∑

n=N+1

∑
mk=n;m>N

|akbm|+
N2∑

n=N+1

∑
mk=n;k>N

|akbm| .

Due to the symmetry, it suffices to estimate one of terms in the right hand side.

N2∑
n=N+1

∑
mk=n;k>N

|akbm| ≤
N2∑

k=N+1

|ak| ·
N∑
m=1

|bm|

≤
∞∑
k=N

|ak| ·
∞∑
m=1

|bm| < ε

( ∞∑
m=1

|bm|

)
.

(b) Since (ζ(s))2 =

∞∑
k=1

1

ks
·
∞∑
m=1

1

ms
=
∑
k,m

1

(mk)s
.

For each n ∈ N, the number of divisors is equal to the number of ways of repre-

senting n by mk. Thus, ∑
k,m

1

(mk)s
=

∞∑
n=1

d(n)

ns
.

Similarly,

ζ(s)ζ(s− a) =
∑
k,m

ma

(mk)s
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For a given n ∈ N, we sum over all ma where m is a divisor of n. Thus

ζ(s)ζ(s− a) =

∞∑
n=1

σa(n)

ns
.

Chapter 7-Q3: (a) By Euler’s identity,

1

ζ(s)
=
∏
p

(1− 1

ps
) =

∞∑
n=1

an
ns
.

If n = 1, a1 = 1 clearly. If n = p1p2 · ·pk, where pj are all distinct prime. Then

an = (−1)k. Result follows from unique factorization of integer.

(b) Since 1 = ζ(s) · 1
ζ(s) ,

1 =

∞∑
m=1

1

ms
·
∞∑
k=1

µ(k)

ks
=

∞∑
n=1

an
ns

where an =
∑
mk=n µ(k) =

∑
k|n µ(k). By comparing coefficient, we show the

claim.

Chapter 7-Q5: (a) This is a special case of Q1 in Ch7.

(b)

ζ(s)− ζ̃(s) =

∞∑
n=1

1

(2n)s
=

1

2s

∞∑
n=1

1

ns
= 2−sζ(s).

Rearrange it to obtain the desired equation.

(c) For s ∈ (0, 1), since

1

(2k − 1)s
− 1

(2k)s
> 0

for all k ∈ N, we have ζ̃(s) > 0. By analytic continuation, equation in part (b)

holds on the whole complex plane. So, ζ(s) has no zero on (0, 1).

According to the functional equation,

ζ(s) = πs−1/2ζ(1− s)Γ((1− s)/2)

Γ(s/2)
.

At s = 0, the simple pole at s = 0 for ζ(1 − s) is cancelled out with the simple

zero of Γ(s/2). Thus, ζ has no zero at s = 0.

Chapter 7-Q6: If a = 1, ∫ c+iN

c−iN

1

s
ds = log

[
c+ iN

c− iN

]
→ log(−1) = iπ.

If a ∈ [0, 1), Since as/s has no pole on the right half plane of the vertical strip,

1

2πi

∮
γ

as

s
ds = 0,
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where γ is the curve composed of the vertical strip from c− iN to c+ iN and a semi-

circle γ′ from c+ iN to c− iN in clockwise direction.

Thus,

lim
N→∞

1

2πi

∫ c+iN

c−iN

as

s
ds = lim

N→∞

1

2πi

∫
−γ′

as

s
ds.

But ∣∣∣∣∫
−γ′

as

s
ds

∣∣∣∣ ≤ ∫ π/2

−π/2

|ac+N cos t|
|c+Neit|

·Ndt

≤
∫ π/2

−π/2

|ac+N cos t|
N − c

·Ndt

≤ 4ac
∫ π/2

0

aN cos t dt,

for all large N . Via change of coordinate cos t = x, we get∫ 1

0

aNx
1

sin t
dx =

∫ 1

0

aNx√
1− x2

dx→ 0 as N →∞.

You can show this by splitting the integral into
∫ 1

1/2
and

∫ 1/2

0
. And followed by direct

integration. Or use dominated convergence theorem. Combine everything to conclude

the case of a ∈ [0, 1).

If a > 1, consider the contour γ composed of the vertical strip from c− iN to c+ iN ,

the horizontal strip from c + iN to y-axis, the semi-circle from iN to −iN oriented

in the anticlockwise direction, and then the horizontal strip from −iN to the vertical

strip c+ it, t ∈ R. Denote the contour γ by γ1 + γ2 + γ3 + γ4 respectively.

For γ3, we have

|
∫
γ3

as

s
ds| ≤

∫ π/2

3π/2

aN cos t

|Neit|
N dt =

∫ π/2

3π/2

aN cos t dt.

Argue similar to above, we have when N →∞∫ π/2

3π/2

aN cos t dt→ 0.

Similarly, the integral over γ2, γ4 also tends to 0, as N →∞. By residue theorem, the

integral over γ is 1 which yield our result.

Chapter 7-Q8: (a)

F (−s) = ξ(1/2− s) = ξ(1− 1/2 + s) = ξ(1/2 + s) = F (s).

The second equality follows from functional equation of ξ. By expanding its

power series, F (s) =
∑∞
n=0 ans

n. We conclude that an = 0 if n is odd. So

G =
∑∞
n=0 a2ns

n.
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(b) The only pole of ζ is at s = 1, so it remains to show the order of growth of

(s− 1)ζ(s). Make use of the following functional equation, for Re(s) < 0,

ζ(s) = πs−1/2ζ(1− s)Γ((1− s)/2)

Γ(s/2)
.

Noted that
1

Γ(s)
, πs is of order 1.

|Γ((1− s)/2)| ≤
∫ ∞
0

e−t|t(−s−1)/2| dt ≤
∫ ∞
0

e−tt(−Re(s)−1)/2 dt

≤ Γ((1−Re(s))/2)

≤ (−Re(s))!

By Stirling formula, it is of order 1. So it suffices to consider Re(s) ≥ 0. But it

has already been done in Proposition 2.7 of ch6.

It remains to show the lower bound. Substitute s = −2n− 1, we have

|ζ(−2n− 1)| = π−2n−3/2ζ(2 + 2n)
Γ(n+ 1)

Γ(−n− 1/2)

= π−2n−3/2
n!

Γ(−n− 1/2)

∞∑
k=1

1

k2+2n
.

On the other hand,

|Γ(−n− 1/2)| =
√
π

(n+ 1/2)(n+ 1/2− 1) · · · (3/2)(1/2)

=
2n
√
π

(2n+ 1)(2n− 1) · · · (3)(1)

=
22nn!

√
π

(2n)!
·

Also, by comparing to the integral , we have
∞∑
k=1

1

k2+2n
≈ 1

1 + 2n
.

Combine all this, we get

|ζ(−2n− 1)| ≈ π (2n)!

(2π)2n
1

1 + 2n

Taking log yield

log |ζ(−2n− 1)| ≈ log π + log[(2n)!]− 2n log (2π)− log (1 + 2n)

Since log(2n)! ≈ 2n log(2n) +O(n), we conclude that ζ(−2n− 1) is of order 1.

(c) By Q14 in ch5, G has infinitely many zeros. Since

ζ(s+ 1/2) = π1/4+s/2 ξ(s+ 1/2)

Γ(s/2 + 1/4)
= π1/4+s/2 F (s)

Γ(s/2 + 1/4)
,

ζ(s) has infinitely many zeros.
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